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Abstract. Domain adaptive segmentation (DAS) of numerous organelle
instances from large-scale electron microscopy (EM) is a promising way
to enable annotation-efficient learning. Inspired by SAM, we propose a
promptable multitask framework, namely Prompt-DAS, which is flexible
enough to utilize any number of point prompts during the adaptation
training stage and testing stage. Thus, with varying prompt configura-
tions, Prompt-DAS can perform unsupervised domain adaptation (UDA)
and weakly supervised domain adaptation (WDA), as well as interactive
segmentation during testing. Unlike the foundation model SAM, which
necessitates a prompt for each individual object instance, Prompt-DAS is
only trained on a small dataset and can utilize full points on all instances,
sparse points on partial instances, or even no points at all, facilitated by
the incorporation of an auxiliary center-point detection task. Moreover,
a novel prompt-guided contrastive learning is proposed to enhance dis-
criminative feature learning. Comprehensive experiments conducted on
challenging benchmarks demonstrate the effectiveness of the proposed
approach over existing UDA, WDA, and SAM-based approaches.

Keywords: Domain adaptive segmentation · Weak supervision · Elec-
tron microscopy · Mitochondria · Promptable learning.

1 Introduction

Accurate semantic segmentation of subcellular organelles, e.g., mitochondria,
from various types of large-scale electron microscopy (EM) sequences is essential
for cancer research and biology study [9]. Although deep neural networks includ-
ing convolutional neural networks [13] and vision transformers (ViTs) [3] have
revolutionized the field of semantic segmentation for nearly all applications, in-
cluding EM image segmentation [4,10,12,17,19], the existing deep neural network
models necessitate extensive pixel-wise annotations, involving expensive anno-
tation budgets by experts. Furthermore, they typically show significant perfor-
mance deterioration when applied directly to image datasets exhibiting different
distributions. This challenge is particularly relevant in the context of EM im-
ages, which experience significant domain shifts attributable to variations in mi-
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croscopy techniques and tissue types. Manually annotating numerous organelle
instances from large-scale EM images is time-consuming and labor-intensive.

To reduce the burden of annotating each domain, we explore domain adap-
tation, which aims to reuse a well-trained model on a given source domain and
adapt it to a target domain with a different distribution. Although the unsu-
pervised domain adaptation (UDA) completely assumes no annotation on the
target domain, UDA methods still show relatively low performance on com-
plicated tasks, which prohibits their practical usage. To alleviate this issue, we
leverage sparse points as [11] on the target domain as cheap weak labels to boost
the segmentation performance with minimal annotation effort. In other words,
we consider weakly supervised domain adaptation (WDA) with the same setting
as WDA-Net [11]. Compared to full point annotation for all object instances and
pixel-wise annotation, the partial points demand substantially less time and ex-
pert knowledge [11]. Thus, annotating sparse points on a small number of object
instances in EM images can be easily completed by non-experts.

Recently, prompt-driven foundation models have shown remarkably strong
generalization ability without training on specific targets, intriguing a trend
toward more flexible segmentation paradigms. Notably, SAM [6], which is pre-
trained on billion-scale datasets of natural images, has demonstrated impressive
performance on various segmentation tasks with points, boxes, or masks as user-
generated prompts. These promptable segmentation models also pave the way for
longstanding interactive segmentation, which can be responsive to user intention
or progressively refine the segmentation, guided by the user input.

However, SAM still has several limitations. First, SAM still struggles with do-
main shifts and usually shows low performance on medical image tasks, especially
with point prompts, due to the lack of medical knowledge, ambiguous bound-
aries, and complex shapes. To enhance the performance, several studies [2,16,20],
have proposed modifying or fine-tuning SAM using medical data, such as SAM-
Med2D [2], Med-SA [16]. Second, SAM lacks the functionality to segment all
object instances of the same class without prompts on all instances, making it
particularly challenging to segment numerous organelle instances from EM im-
ages. Third, SAM exhibits lower performance when using points as prompts,
especially for medical images, as several studies [18] have also shown.

Inspired by SAM, we introduce Prompt-DAS, a promptable transformer
model for domain-adaptive segmentation of EM images. Our model is flexible
enough to utilize prompts during both the training and testing stages, offer-
ing advantages over previous UDA and WDA methods. To achieve a minimal
annotation burden, we use sparse points as cost-effective prompts for the se-
mantic segmentation of all object instances within the EM images. Unlike SAM-
based models, which require training on billion-scale datasets, we adapt a model
trained on a source domain from scratch to a new target domain that already
has sparse points available for the target training data and does not assume the
availability of prompts during the testing stage. However, when point prompts
are available during the testing stage, the output of our method can further
align with user intent. Moreover, our model conducts one-pass segmentation of
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Fig. 1: Overview of our Prompt-DAS model for domain adaptive segmentation.

many object instances with any point prompts, presenting an advantage over
SAM. To enhance discriminative feature learning, we introduce a novel prompt-
guided contrastive learning. Comprehensive experiments conducted on challeng-
ing benchmarks demonstrate the effectiveness of the proposed approach.

2 Method

Problem. Suppose a source domain Ds = {(xs, ys)} with full pixel-wise labels
ys, and a target domain Dt = {(xt, c̄t)} with point labels on centers of a few
object instances. The binary dot label map c̄t takes 1 only at the annotated
sparse points. Additionally, the full dot label of a pixel-wise label y, denoted as
c, has a corresponding density map d that is obtained through convolution with
a Gaussian kernel kσ, expressed as d = kσ∗c. Our objective is to develop a model
that is flexible enough to perform UDA, WDA, as well as interactive versions
of UDA and WDA. The model should also be flexible enough to be capable of
effectively utilizing both training and testing prompts when provided.

Overview. Figure 1 illustrates our Prompt-DAS, which encompasses an im-
age encoder fE , a point prompt encoder fP that processes M ≥ 0 points at once
as inputs, a multitask decoder fD followed by a semantic segmentation head
fS , and a regression-based center-point detection head fR. In scenarios where
M = 0 points are provided on target training data, our model operates as UDA,
referred to as Prompt-DAS (0%). In scenarios where M > 0 points are given on
the target training data, our model conducts WDA learning. By default, we use
15% sparse points, and our model is designated as Prompt-DAS (15%). When
prompt points are provided during the testing phase, our model is capable of
executing interactive UDA/WDA segmentation, denoted as Prompt-DAS+.

To tackle the issue of label scarcity on the target domain during domain
adaptation learning, we conduct pseudo-label learning for both the segmenta-
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tion and detection tasks under the mean-teacher framework [14]. The output
of the detection head fR is used to provide prompts for the segmentation task.
Furthermore, the segmentation head fS is guided by a prompt-based contrastive
loss, enhancing the discriminability of prompt embeddings.

Promptable Detection. The proposed Prompt-DAS utilizes an auxiliary
detection task to enhance the segmentation learning. The center point detec-
tion task is relatively easier than the dense segmentation task, particularly
given sparse points as training prompts and partial supervision. While the joint
learning of multiple tasks can implicitly boost the segmentation performance,
confident detection outputs are further employed to augment the ground-truth
point prompts for the segmentation task. Following the teacher-student frame-
work [14], pseudo-labels for the unlabeled regions are generated by selecting most
highest local maxima points with a threshold from the predicted density map
by the teacher model, which is updated by the exponential moving average of
the student network. Note that local maxima points can be identified through
Non-Maxima Suppression. For the target data, student network training is su-
pervised by both the ground-truth sparse points and pseudo labels, and the M
sparse points are also used as training prompts. In the scenario of UDA, where
there are no point annotations on the target domain, we use the estimated confi-
dent points from the prediction of the source model as the pseudo sparse points.
For the source data, ground truth center points are used as the supervision, and
randomly sampled ns center points are used as training prompts.

Ldet =
1

|Ds|
∑
xs

MSE(FR(x
s), ds) +

1

|Dt|
∑
xt

MSE(FR(x
t), d̂t) (1)

where FR=fR◦fD◦fE , MSE represents mean square error loss, and d̂t represents
the density map generated by the target pseudo labels and ground truth points.

Promptable Segmentation. To alleviate label scarcity, we leverage pseudo-
labeling in the teacher-student framework. Thus, both ground truth source labels
and target pseudo-labels are used to supervise the model training.

Lseg =
1

|Ds|
∑
xs

CE(FS(x
s), ys) +

1

|Dt|
∑
xt

CE(FS(x
t), ŷt) (2)

where FS=fS ◦ fD ◦ fE , CE represents the standard cross-entropy loss, ŷt rep-
resents the pseudo labels generated by the teacher model on the target domain.

Similar to the detection head, we also use points as the segmentation training
prompts. For the source domain, we use the ns points sampled for the detection
task as the training prompts. Note that ns is a random number during training.
Since the target data only has a few points as the annotation, we propose to use
both the estimated points from the detection output and ground-truth sparse
points as training prompts to assist the segmentation training. The target point
prompts are generated by selecting most highest local maxima points with a
threshold from the predicted density map by the detection head.

Prompt-guided Contrastive Learning (PCL). To learn more discrimi-
native embeddings during pseudo-label learning, we further introduce contrastive
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learning with the guidance of prompts, which can provide representative features
to distinguish mitochondria instances from the background organelle. As shown
in the left figure of Fig. 1, our contrastive learning aims to pull the feature embed-
dings of the estimated foreground points closer to that of the ground-truth sparse
points while simultaneously pushing away from the foreground embeddings from
the background embeddings. An MLP layer ϕ is utilized before conducting con-
trastive learning. Let zt = ϕ(fD(fP (p

t))) denote the embedding derived from
the target domain point pt. We employ an attention mask mechanism following
DN-DETR [8] to prevent information leakage from PCL.

Queries are generated from pixels identified as foreground exhibiting a suf-
ficiently high confidence. Utilizing the pseudo-labels produced by the teacher
model, we select three points from each instance with a confidence greater than
δf , resulting in Nq foreground prompt embeddings {zti}N

q

i=1. Concurrently, we
identify Nn points with a confidence level below δb, resulting in Nn background
prompt embeddings {µb

k}N
n

k=1. Since mitochondrial instances display high simi-
larity, we employ the average embedding of sparse point prompts as the sparse
prompt embedding µf . The prompt-guided contrastive loss is defined as follows:

Lpcl = −
Nq∑
i=1

log

[
exp

(
µf · zti/τ)

)
exp (µf · zti/τ)) +

∑Nn

k=1 exp
(
µb
k · zti/τ

)] (3)

In our experiments, we set Nn = 256, δf = 0.9, and δb = 0.1.

3 Experiments

Benchmark and Metrics. We evaluate the proposed method using the Mi-
toEM dataset [15], which is 3600 times larger than previous datasets and presents
a greater challenge due to the wide diversity of mitochondria in terms of shape
and density. This dataset comprises two volumes of 30×30×30 µm3 derived
from the temporal lobe of an adult human and the primary visual cortex of an
adult rat. The two datasets are named MitoEM-Human and MitoEM-Rat. The
MitoEM-Human dataset contains significantly more mitochondria instances and
a higher number of small mitochondria instances compared to the MitoEM-Rat
dataset. Both datasets consist of 500 images of size 4096×4096, where 400 images
are allocated for training and 100 images for testing on each dataset. We consider
the cross-domain segmentation between MitoEM-Human and MitoEM-Rat. We
evaluate our method using the semantic-level Dice similarity coefficient (Dice)
and the instance-level Aggregated Jaccard Index (AJI) [7], as well as Panoptic
Quality (PQ) [5].

Implementation Details. We use the pre-trained ViT-S/8 with DINO [1]
as our image encoder. Our decoder fD is similar to that of SAM but with mask at-
tention and cross-attention to prevent information leakage. In contrast to SAM,
our prompt encoder is a standard positional embedding. Our MLP is the same
as the MLP of SAM and other standard transformers. More details can be found
in our released code https://github.com/JiabaoChen1/Prompt-DAS. The model
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Table 1: Comparison results. We compare our Prompt-DAS under different set-
tings with UDA, WDA, and SAM-based approaches. For WDA, sparse points on
target training data are used as training prompts to achieve minimal annotation
efforts. For interactive segmentation, indicated by a "+", all center points of the
testing data are used as testing prompts to fulfill the requirements of SAM.

Methods Prompts Type Human → Rat Rat → Human

Training Testing Dice AJI PQ Dice AJI PQ

SAM [6]

NoAdapt

32.0 14.3 30.0 20.8 11.4 18.7
SAM-Med2D [2] 15.9 - - 22.5 - -
Med-SA [16]† 75.5 56.6 27.5 72.4 55.0 33.4
Our Source Model 88.6 76.7 68.7 78.1 62.8 55.5

SAM+ [6] ✓ 40.6 1.2 26.2 40.3 4.6 26.6
SAM-Med2D+ [2] ✓ NoAdapt 72.6 55.6 39.7 78.1 61.2 42.2
Med-SA+ [16] ✓ (Interact.) 86.2 70.2 59.9 83.8 68.1 59.0
Our Source Model+ ✓ 89.8 78.8 74.1 87.6 76.0 70.6

DAMT-Net [10]

UDA

88.7 76.3 61.8 85.4 72.3 63.7
UALR [17] 86.3 71.6 53.7 83.8 69.7 60.0
DA-ISC [4] (2.5D) 88.6 75.7 65.8 85.6 72.7 63.8
CAFA [19] (2.5D) 89.2 - - 86.6 - -
WDA-Net (0%) [11] 88.2 74.5 59.0 85.5 72.3 60.6
Prompt-DAS (0%) 92.4 82.2 74.3 88.0 76.6 68.1

WeSAM (15%) [20]‡ ✓
WDA

7.5 0.1 2.2 3.6 1.3 1.6
WDA-Net (15%) [11] ✓ 91.7 80.7 74.0 88.7 77.6 67.8
Prompt-DAS (15%) ✓ 93.3 83.6 74.5 89.2 78.6 69.1

WeSAM (15%)+ [20]‡ ✓ ✓ WDA 89.9 79.6 73.9 82.3 66.0 65.5
Prompt-DAS(15%)+ ✓ ✓ (Interact.) 93.5 84.4 74.2 90.8 81.5 72.3

Supervised model Oracle 94.6 86.4 79.2 92.6 84.6 75.8
† Fine-tuning using the source data
‡ Fine-tuning using the source data and target data with 15% sparse point labels

is trained for 16k iterations with a batch size of 2, using the AdamW optimizer
with an initial learning rate of 1× 10−5. The input images are subjected to ran-
dom cropping, resulting in a size of 384×384 pixels. We use a polynomial decay
of power 0.9 to control the learning rate decay. For a fair comparison, the same
data augmentations as those in WDA-Net are used. During the inference phase,
we apply a sliding window with the same resolution as used during training.
The implementation is conducted using PyTorch, and our model is trained for 6
hours on one RTX 4090 GPU with 24 GB of memory.

Quantitative Evaluations. In Table 1, we compare our Prompt-DAS model
with six different types of models. 1) Methods without domain adaptation (NoAd-
apt): SAM-based models without testing prompts, including SAM [6], SAM-
Med2D [2], and Med-SA† [16], where † means training using our source EM



Prompt-DAS 7

Fig. 2: Qualitative comparison results on two adaptation tasks. Green: true pos-
itives; Red: false negatives; Blue: false positives.

data; 2) NoAdapt with testing prompts for interactive segmentation: SAM+,
SAM-Med2D+, and Med-SA+; 3) SOTA 2D and 2.5D UDA methods, including
DAMT-Net [10], UALR [17], DA-ISC [4], CAFA [19], and WDA-Net (0%) [11],
and WeSAM [20] with fine-tuning on the source and target data; 4) SOTA WDA
methods, including WDA-Net (15%) [11]), and WeSAM(15%)‡ [20], which use
15% sparse points on the target training set and trained/finetued under the
same setting as our Prompt-DAS(15%); 5) Interactive version the WDA meth-
ods: WeSAM(15%)+‡, and Prompt-DAS(15%)+; 6) The upperbound, which is the
model fully supervised trained on the target domain. Additionally, five settings
of our model are in comparison, including our source model, our source model
for interactive segmentation, our Prompt-DAS (0%) for UDA segmentation, our
Prompt-DAS (15%) for WDA segmentation, and our Prompt-DAS (15%)+ for
interactive WDA segmentation. It is noteworthy that, SAM, SAM-Med2D, Med-
SA, and WeSAM are foundation models trained on billion-scale datasets, with
or without adaptation using large-scale medical data. In contrast, our Prompt-
DAS model is trained from scratch. In the context of interactive segmentation,
all center points are used as testing prompts, as required by SAM; however, this
setting is impractical for clinical usage. Conversely, during the testing stage, our
model can effectively utilize sparse point prompts on partial object instances,
enhancing its usability in real-world scenarios.

Table 1 presents quantitative results on two domain adaptation tasks. It
is worth noting that the SAM and its medical versions show severely degraded
performance both with and without testing prompts when directly applied to EM
images. With fine-tuning using the EM data, the WeSAM demonstrates greatly
improved performance over other SAM-based models. Our Prompt-DAS with
15% sparse points as training prompts achieves the highest performance on both
cross-domain segmentation tasks compared to all UDA, WDA, and SAM-based
methods. Notably, our Prompt-DAS (0%), the UDA version of our model, nearly
outperforms all UDA, WDA, and SAM-based methods in comparison except
the WDA-Net (15%) on MitoEM-Rat → MitoEM-Human. With the inclusion of
testing prompts, our Prompt-DAS (15%)+ achieves further performance gains,
specifically a 1.6% increase in Dice over the Prompt-DAS (15%) for MitoEM-Rat
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Table 2: Ablation study on Human → Rat.
Pseudo-labeling Training PCL Dice (%) PQ (%)Detection Segmentation Prompts

I 88.6 68.7
II ✓ 89.2 70.4
III ✓ 89.5 70.0
IV ✓ ✓ 90.4 71.8
V ✓ ✓ 89.8 71.7
VI ✓ ✓ ✓ 92.7 74.1
Full ✓ ✓ ✓ ✓ 93.3 74.5

Table 3: The impact of testing prompt amount on interactive segmentation.

Testing Prompts
(Points)

Human → Rat Rat → Human
Dice (%) PQ (%) Dice (%) PQ (%)

0 93.3 74.5 89.2 69.1
15% 93.5 74.2 90.0 69.8
50% 93.5 74.2 90.4 70.9
100% 93.5 74.2 90.8 72.3

→ MitoEM-Human. Compared to WDA-Net (15%), our method demonstrates
greater flexibility in alignment with human intention. Moreover, our Prompt-
DAS model exhibits performance that closely approaches the supervised upper
bound, with only a minimal performance gap. Visual comparison results in Fig.
2 further confirm the advantage of our method.

Ablation study. In Table 2, we evaluate the contributions of the key compo-
nents of our approach: 1) Detection Pseudo-labeling; 2) Segmentation Pseudo-
labeling; 3) Using sparse points as Training Prompts; 4) PCL: prompt-based
contrastive learning. As shown in Table 2, the base Model I, our source model,
can be improved by adding pseudo-labeling-based detection or segmentation. By
conducting multitask learning, Model IV obtains a performance gain of 1.8% in
Dice over Model I. With training prompts, we further gain an improvement of
2.3% in Dice over Model IV and obtain Model VI. With additional PCL, our
full model further gains an improvement of 0.6% in Dice and 0.4% in PQ.

Influence of testing prompts. Compared to SAM, our model is flexible
enough to utilize partial center points as testing prompts. Table 3 presents the
influence of testing prompts for interactive segmentation. For Rat → Human,
our model can gain improved performance with more point prompts. However,
for Human → Rat, adding point prompts does not improve the performance.
The main reason is that our model’s performance is already very close to the
supervised upper bound, and there is a minimal number of false negatives. More-
over, our model can achieve similar performance with only 15% partial points,
taking less than 1/5 of the annotation time of full points.
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4 Conclusion

In this study, we develop a promptable transformer model for domain adaptive
segmentation of EM images, which can conduct UDA, WDA, and interactive seg-
mentation with various prompting configurations, including sparse points. Our
model augments the segmentation task with a detection task, which can signifi-
cantly alleviate label scarcity and generate pseudo-prompts for the segmentation.
Furthermore, the segmentation is guided by a prompt-based contrastive loss, en-
hancing the discriminability of prompt embeddings. Comprehensive experiments
conducted on challenging benchmarks demonstrate the SOTA performance of
our approach. The limitation of our model is its requirement for source data and
labels for training. In future studies, we will consider a source-free setting.
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